Chamber systems and buildings

1 Incidence geometry

Incidence geometry, in its most general sense, involves a number of different types of geometric objects, with a binary relation of 'incidence' which may hold between objects of different types. The objects may be points, lines, conics, etc.; the usual term for them is 'varieties' (borrowed from algebraic geometry). The most common situation is where there are just two types, though the more general case was considered by Moore in 1896.

Formally, an incidence geometry consists of a set V of varieties, a finite set I of types, a type map $\tau: V \rightarrow I$, and a symmetric incidence relation $*$ on V, satisfying the following axiom:

$$
\text { (IG1) For } v, v^{\prime} \in V \text {, we have } \tau(v)=\tau\left(v^{\prime}\right) \text { and } v * v^{\prime} \text { if and only if } v=v^{\prime} \text {. }
$$

In other words, a variety is incident with itself (this is just a convenient convention) and with no other variety of the same type. We denote by V_{i} the set of varieties of type i, for $i \in I$. The incidence relation $*$ can be regarded as adjacency in a graph, which is multipartite with parts V_{i} (for $i \in I$), together with a loop at each vertex. The rank of a geometry is the number of types.

We have assumed that the rank is finite. This assumption can be relaxed; but, as we will see, induction on the rank is one of the most powerful weapons in a geometer's arsenal.

A geometry of rank 2 is what is often referred to as an incidence structure. Combinatorialists often refer to the two types of varieties in an incidence structure as points and blocks, and (where possible) like to identify a block with the set of points incident to it. However, from our point of view, a rank 2 geometry is a bipartite graph. This graph is often called the Levi graph of the incidence structure, after Levi in 1929.

Sometimes it is possible to change our point of view of an incidence geometry to be closer to that just described in the rank 2 case. Let 0 be a distinguished type. We take the elements of the set V_{0} as points. Now the shadow $\operatorname{Sh}(v)$ of a variety v is the set of all points incident with v. If the geometry has the additional property that distinct varieties have distinct shadows, then we can identify all varieties with sets of points. However, description of incidence in terms of the intersections of shadows is not straightforward, except in special cases. (In projective spaces,
which we discuss below, two varieties are incident if and only if the shadow of one contains the shadow of the other; that is, incidence is 'symmetrised inclusion'.)

Further axioms are generally assumed; these are now fairly standard although this has not always been true. These axioms concern maximal flags and connectedness. As explained in the Introduction, we do not assume these axioms without saying so explicitly.

A flag is a set of mutually incident varieties. Note that the type map restricted to a flag is one-to-one, according to our axioms. The type $\tau(F)$ of a flag F is the set of types of its varieties, that is, the image of F under the type map. Its cotype is $I \backslash \tau(F)$. The rank of a flag is its cardinality (or, as is the same, the cardinality of its type), and its corank is the cardinality of its cotype.

We make the following assumptions.
(IG2) A maximal flag contains one variety of each type; that is, the type map restricted to a maximal flag is a bijection.
(IG3) A flag of corank 1 is contained in at least two maximal flags.
Condition (IG2) is called the transversality condition, since it asserts that any maximal flag is a transversal to the partition of V induced by the type function.

Sometimes condition (IG3) is relaxed, in which case we call a geometry firm if it holds. Moreover, a geometry is called thin if (IG3) holds with 'exactly two' in place of 'at least two', and thick if (IG3) holds with 'at least three' in place of 'at least two'.

Example A cycle consisting of $2 n$ vertices and $2 n$ edges is bipartite, and so is a thin rank 2 incidence structure. Somewhat confusingly, it is an n-gon (that is, its varieties are the vertices and edges of an ordinary n-gon, and incidence is the usual geometric notion). Figure 1 shows a 4 -gon in its usual representation and as a geometry (a Levi graph). In the second diagram, the two types are shown as dots of different sizes. Loops have been omitted.

Example A polyhedron in Euclidean 3-space defines an incidence structure with three types of varieties: vertices, edges and faces.

Let F be a non-maximal flag. The residue of F, denoted by $R(F)$, is the subgeometry consisting of all the varieties v satisfying $v * w$ for all $w \in F$ but $v \notin F$. It is a geometry whose type is the cotype of F (and whose rank is the corank of F). If (IG2) and/or (IG3) holds in the whole geometry, then it holds in the residue of each flag.

Figure 1: A 4-gon

This construction allows the possibility of induction on the rank of the geometry, both for proofs and for definitions.

A geometry \mathcal{G} is connected if the graph on V defined by the incidence relation is connected. We say that \mathcal{G} is residually connected if, for any flag F with corank at least 2, the residue of F is connected. (Of course, if (IG3) holds, then the residue of a flag of corank 1 is never connected.) For rank 2 geometries, connectedness and residual connectedness are the same condition. Now the connectedness axiom which is usually assumed is the following.
(IG4) The geometry is residually connected.
We now turn to the construction of geometries from groups. An automorphism of a geometry is a permutation of the set V of varieties which preserves both the type function and the incidence relation; that is, every variety is mapped to one of the same type, and incident pairs of varieties are mapped to incident pairs. This is sometimes called a strong automorphism, in contrast with a weak automorphism, which is also allowed to permute the types. (Thus, a weak automorphism can be described as a pair (g, γ), where g is a permutation of V and γ a permutation of I, satisfying $\tau(v g)=\tau(v) \gamma$ for all $v \in V$ and also $\left(v * v^{\prime}\right) \Rightarrow\left(v g * v^{\prime} g\right)$. Thus a weak automorphism is strong if and only if γ is the identity permutation.) We consider only strong automorphisms, and refer to them just as automorphisms.

Any automorphism carries a maximal flag to another maximal flag. A group G of automorphisms of the geometry is said to act flag-transitively if any maximal flag can be mapped to any other by some automorphism in G.

The case where the geometry most closely reflects the structure of the group occurs when the group is flag-transitive. In this case, we can describe the geometry within the group, as follows.

Let G be a flag-transitive group of automorphisms of a geometry \mathcal{G}. Let F be a maximal flag of \mathcal{G}, and let v_{i} be the unique variety of type i in F and H_{i} the stabiliser of v_{i} in G, for all $i \in I$. Now, since G acts transitively on V_{i}, we can identify the varieties of type i with the right cosets of H_{i} in G : the variety $v_{i} g$ corresponds to the coset $H_{i} g$.

We claim:
Two varieties are incident if and only if the corresponding cosets have non-empty intersection.

For suppose first that $H_{i} g_{i} \cap H_{j} g_{j} \neq \emptyset$. If g belongs to this intersection, then $H_{i} g_{i}=$ $H_{i} g$ and $H_{j} g_{j}=H_{j} g$. Now the varieties $H_{i} g$ and $H_{j} g$ are the images of H_{i} and H_{j} under the automorphism g; since $H_{i}=v_{i}$ and $H_{j}=v_{j}$ are incident, so are $H_{i} g$ and $H_{j} g$.

Conversely, suppose that $H_{i} g_{i}$ and $H_{j} g_{j}$ are incident. By flag-transitivity, there is an automorphism g carrying H_{i} and H_{j} to $H_{i} g_{i}$ and $H_{j} g_{j}$; so $g \in H_{i} g_{i} \cap H_{j} g_{j}$.

Now we can reverse this procedure: given a group G and subgroups H_{i} for $i \in I$, we can define a geometry whose varieties are the cosets of these subgroups, with the obvious type map and with two varieties incident if they have non-empty intersection. We call this a coset geometry $\mathcal{G}\left(G ;\left(H_{i}: i \in I\right)\right)$. Clearly (IG1) and (IG2) hold, and G acts by right multiplication as a group of automorphisms of the geometry. We investigate what group-theoretic conditions guarantee the other axioms.

Let $B=\bigcap_{i \in I} H_{i}$, and for $i \in I$, let $P_{i}=\bigcap_{j \in I \backslash\{i\}} H_{j}$. Then B is the stabiliser of our standard maximal flag F, and (by flag-transitivity) the stabiliser of any other maximal flag is a conjugate of B. Moreover, P_{i} is the stabiliser of the sub-flag of F of cotype $\{i\}$. Then the varieties of type i incident with $F \backslash\left\{v_{i}\right\}$ are the cosets of H_{i} contained in $H_{i} P_{i}$; so
(IG3) holds if and only if P_{i} is not contained in H_{i}.
To investigate residual connectedness, we first note that the coset geometry $\mathcal{G}\left(G ;\left(H_{i}: i \in I\right)\right)$ is connected if and only if the subgroups $H_{i}($ for $i \in I)$ generate G. Now the residue of H_{i} in the coset geometry $\mathcal{G}\left(G,\left(H_{i}: i \in I\right)\right)$ is the coset geometry $\mathcal{G}\left(H_{i},\left(H_{i} \cap H_{j}: j \in I \backslash\{i\}\right)\right)$. For the residue of H_{i} consists of all cosets $H_{j} h$ with $h \in H_{i}$ and $j \neq i$. Now $H_{j} h=H_{j} h^{\prime}$ if and only if $h^{\prime} h^{-1} \in H_{i} \cap H_{j}$; so
the varieties of type j correspond to cosets of $H_{i} \cap H_{j}$ in H_{i}. Two varieties of this residue are incident if and only if they have the form $H_{j} h$ and $H_{k} h$ for some $h \in H_{i}$.

So finally:
Theorem 1 The coset geometry $\mathcal{G}\left(G,\left(H_{i}: i \in I\right)\right)$ is residually connected if and only if, for every subset J of I with $|I \backslash J| \geq 2$, we have

$$
\bigcap_{i \in J} H_{i}=\left\langle\bigcap_{i \in J \cup\{j\}} H_{i}: j \in I \backslash J\right\rangle .
$$

This is not an easy condition to check!

2 Diagrams

The recent revival of interest in incidence geometry with several types has grown from the work of Buekenhout [2] on diagram geometries. Buekenhout gave a simple pictorial method of describing natural axiomatic classes of geometries as follows.

Let I be a finite set. A diagram Δ over I consists of a set $\Delta_{i j}$ of geometries for each $i, j \in I$ with $i \neq j$. Each geometry in $\Delta_{i j}$ has two types of vertices, which we will call 'points' and 'blocks'. It is customary to assume that the geometries in $\Delta_{j i}$ are the duals of those in $\Delta_{i j}$, in the sense that they are the same geometries but the attachment of the labels 'point' and 'block' to the types is reversed.

Diagrams can be represented pictorially. Each class $\Delta_{i j}$ is represented by a label on the edge joining i to j in the complete graph on the set I. We take the symbol describing $\Delta_{j i}$ to be the typographic reverse of that describing $\Delta_{i j}$.

Now let \mathcal{G} be a geometry with type set I. We say that \mathcal{G} belongs to the diagram Δ if, for any flag F of cotype $\{i, j\}$, the residue of F is isomorphic to a geometry in $\Delta_{i j}$, where the isomorphism carries 'points' and 'blocks' to varieties of types i and j respectively. (This explains why we assume the duality condition above.)

Thus, any diagram gives an axiomatic definition of a class of geometries.
As an example, we discuss projective geometry in some detail. First we define the classes of geometries in our diagrams. First, a digon is an incidence structure in which every point is incident with every block. We represent the class of digons by the absence of an edge in the diagram. Next, a projective plane is an incidence structure in which every two points are incident with a unique block, and any two blocks with a unique point, but no point is incident with every block and no block
is incident with every point. This is represented by a single edge without a label. (Note that both these classes are self-dual, and the symbols used for them are the same when reversed.) Recall that a digon or projective plane is thick if every point is incident with at least three blocks and dually.

The projective space of dimension n over a division ring D is the geometry whose varieties are all the vector subspaces of the vector space D^{n-1} except for $\{0\}$ and D^{n-1}. The type of a subspace is one less than its dimension (as a vector space), and two subspaces V, V^{\prime} are incident if $V \subseteq V^{\prime}$ or $V^{\prime} \subseteq V$. The type set is $I=\{0,1,2, \ldots, n-1\}$. We claim that an n-dimensional projective space is represented by the diagram in Figure 2.

Figure 2: The diagram A_{n}
To verify this claim, we must calculate the rank 2 residues. Take a flag F containing a subspace V_{k} of each type $k \in I$ except i and j, where we may suppose that $i<j$. There are two cases:

- $j>i+1$. In this case, the varieties of type i are all the subspaces U of type i satisfying $V_{i-1} \subseteq U \subseteq V_{i+1}$, and those of type j are all the subspaces W of type j satisfying $V_{j-1} \subseteq W \subseteq V_{j+1}$. For any such U and W, we have

$$
U \subseteq V_{i+1} \subseteq V_{j-1} \subseteq W
$$

so U and W are incident; the residue is a digon.

- $j=i+1$. Then the varieties of types i and $i+1$ are all those subspaces of these types satisfying

$$
V_{i-1} \subseteq U, W \subseteq V_{i+2}
$$

these correspond to the 1- and 2-dimensional subspaces of the 3-dimensional quotient space V_{i+2} / V_{i-1}. Elementary linear algebra shows that this residue is a projective plane.

In fact, the converse holds too. A thick geometry belonging to the diagram A_{n} above for $n \geq 3$ is a projective space over a division ring. This follows from Hilbert's coordinatisation theorem. This example illustrates how compact the axioms for projective geometry become in this framework.

The convention that digons are represented by the absence of an edge in the diagram helps us to read off properties of the geometry from its diagram. Here are a couple of simple examples.

Theorem 2 (a) If the diagram of a geometry is disconnected, and two varieties have types in different components, then they are incident.
(b) Suppose that $0, i, j$ are types such that the removal of i from the diagram leaves 0 and j in different components. Take varieties of type 0 as points. Let v and w be incident varieties of types i and j respectively. Then $\operatorname{Sh}(v) \subseteq$ $\operatorname{Sh}(w)$.

For further details on diagram geometry, see Pasini [4].

3 Chamber systems

Let $\mathcal{P}(\Omega)$ denote the set of all equivalence relations on the set Ω (or, what amounts to the same thing, the set of all partitions of Ω). There is a natural partial order on Ω, which can be defined most simply as the relation of inclusion on the equivalence relations. (We regard an equivalence relation as a set of ordered pairs.) In terms of partitions, the order is given by the rule that $P_{1} \leq P_{2}$ if P_{1} refines P_{2}, in the sense that every part of P_{1} is contained in a part of P_{2}. This partial order is a lattice order: the meet of two equivalence relations is just their intersection. The join is more difficult to define. If Π is a set of equivalence relations, the Π-graph is the graph with vertex set Ω, in which two vertices are adjacent if and only if they are equivalent with respect to some relation $\pi \in \Pi$. Then the join of π and ρ is the relation whose equivalence classes are the connected components of the $\{\pi, \rho\}$-graph. This lattice is the lattice of partitions of Ω. (To simplify notation later, if a set of equivalence relations is indexed, we speak of the I-graph rather than the $\left\{\rho_{i}: i \in I\right\}$-graph.)

Now a chamber system of type I on Ω is simply a family $\left(\rho_{i}: i \in I\right)$ of equivalence relations on Ω. The elements of Ω are called chambers. We say that chambers α and β are i-equivalent if $(\alpha, \beta) \in \rho_{i}$; sometimes we write this as $\alpha \sim_{i} \beta$.

We normally impose two conditions which lose no generality. First, we assume that, if $i, j \in I$ with $i \neq j$, and α and β are chambers which are both i equivalent and j-equivalent, then $\alpha=\beta$. Second, we assume that the I-graph is connected. If this is not so, then we can treat each connected component separately. In terms of the partition lattice, we are assuming that the meet of any two
of our relations is equality while the join of all of them is the 'universal' relation $\Omega \times \Omega$.

Now let J be a subset of I. We define a residue of type J to be a connected component of the J-graph.

The link with incidence geometries works as follows. Let \mathcal{G} be a geometry satisfying (IG1) and (IG2), with type set I. Take Ω to be the set of maximal flags of \mathcal{G}. For each $i \in I$ we define an equivalence relation ρ_{i} which holds between maximal flags F and F^{\prime} if and only if the varieties of type j in F and F^{\prime} are the same for all $j \neq i$. (There is no great loss in assuming (IG2) here since a maximal flag which is not transversal will be invisible from the chamber system viewpoint.)

It is clear that the intersection of two of these equivalence relations is the relation of equality, but their supremum is not determined. We call the geometry chamber-connected if the chamber system is connected. How is this notion related to other kinds of connectedness?

Theorem 3 Let \mathcal{G} be a geometry satisfying (IG1) and (IG2).
(a) If \mathcal{G} is residually connected, then it is chamber-connected.
(b) If \mathcal{G} is chamber-connected, then it is connected.
(c) Neither of these implications reverses.

Note that, for a rank 2 geometry, the three types of connectedness in Proposition 3 coincide. The geometry is a bipartite graph (the Levi graph of the incidence structure), whose edges are the maximal flags; so its line graph is the chamber graph of the geometry.

Let \mathcal{G} be a geometry with type set I, and let \mathcal{C} be the corresponding chamber system. For any subset J of I, we have two notions of residue in C : a connected component of the J-graph, and the set of chambers in the residue of a flag F of cotype G (that is, the set of maximal flags extending F). We call these chamberresidues and geometric residues respectively. Since edges in the J-graph join maximal flags agreeing outside J, a chamber-residue is contained in a geometric residue. Proposition 3(a) shows that, if \mathcal{G} is residually connected, the two notions coincide.

This shows that, if a chamber system comes from a residually connected geometry, then we can recover the geometry as follows: the varieties of type i are the chamber-residues of cotype i, and two varieties are incident if they have nonempty intersection. This construction gives the 'most highly connected' geometry
for a given chamber system. In particular, it is sometimes possible to start with a geometry which is not residually connected and produce one which is.

Not every chamber system comes from a geometry. A familiar class of examples consists of Latin squares. A Latin square of order n may be defined as an $n \times n$ array with entries from $\{1, \ldots, n\}$ with the property that each symbol occurs exactly once in each row or column. Now let Ω be the set of n^{2} cells of the array, and define three equivalence relations as follows:

- $(\alpha, \beta) \in \rho$ if α and β lie in the same row;
- $(\alpha, \beta) \in \gamma$ if α and β lie in the same column;
- $(\alpha, \beta) \in \sigma$ if α and β contain the same symbol.

Now each rank 2 residue contains all the cells, and has the structure of an $n \times n$ grid. So the attempted construction of a geometry would yield a single variety of each type.

Chamber systems can be constructed from groups. The construction is in some respects simpler than the construction of geometries; it works 'from the bottom up', rather than 'from the top down'. Let G be a group, B a subgroup of G, and $\left(P_{i}: i \in I\right)$ a family of subgroups each containing B, such that $P_{i} \cap P_{j}=B$ for $i \neq j$. We take Ω to be the set of right cosets of B, and, for $i \in I$, two cosets satisfy relation ρ_{i} if they lie in the same coset of P_{i}. This defines a chamber system, on which G acts by right multiplication as a group of automorphisms (preserving all the equivalence relations). It is straightforward to show that, for any $J \subseteq I$, the residues of type J correspond to right cosets of the subgroup

$$
P_{J}=\left\langle P_{i}: i \in J\right\rangle ;
$$

more precisely, a residue is the set of cosets of B in a fixed coset of P_{J}. The chamber stabiliser B is called the Borel subgroup of G, and the subgroups P_{J} are the parabolic subgroups.

We can associate diagrams with chamber systems in much the same way as for incidence geometries. Let $\Delta_{i j}$ be a class of rank 2 chamber systems for all distinct $i, j \in I$, where the types in $\Delta_{i j}$ are 'points' and 'blocks' and these labels in $\Delta_{j i}$ are assigned in the other sense. Then a chamber system belongs to the diagram Δ if its residues of type $\{i, j\}$ belong to $\Delta_{i j}$. For example, in the chamber system constructed from a Latin square, any rank 2 residue is a $n \times n$ grid; so the chamber system has a diagram which is a triangle with each edge labelled 'square grid'.
(Note that a square grid is the chamber system of a generalised digon with equal numbers of varieties of each type.)

This is particularly useful in the case of groups. The amalgam method (see [6]) studies groups generated by known subgroups P_{i} for $i \in I$, which intersect pairwise in a fixed subgroup B. The diagram of the chamber system tells us about the subgroups of G generated by the pairs $\left\{P_{i}, P_{j}\right\}$. From this, the aim is to get information about G. The methods are technical, and we do not discuss them in detail here.

4 Coxeter groups and buildings

A particularly important class of examples arises from Coxeter groups. A Coxeter group is a group defined by a presentation of the form

$$
\begin{equation*}
G=\left\langle x_{i}(i \in I): x_{i}^{2}=1(i \in I),\left(x_{i} x_{j}\right)^{m_{i j}}=1(i, j \in I, i \neq j)\right\rangle, \tag{1}
\end{equation*}
$$

where the $m_{i j}$ are integers (at least 2) or ∞. (By convention, if $m_{i j}=\infty$, this relation is absent.) Much is known about Coxeter groups; some of this is summarised below.

Theorem 4 Let G be the Coxeter group with presentation given by Equation (1).
(a) The orders of x_{i} and $x_{i} x_{j}$ are 2 and $m_{i j}$ respectively - that is, not strictly smaller. (If $m_{i j}=\infty$, then $x_{i} x_{j}$ has infinite order.)
(b) For $J \subseteq I$, the subgroup G_{J} of G generated by $\left\{x_{i}: i \in J\right\}$ is the Coxeter group defined by the presentation

$$
G_{J}=\left\langle x_{i}(i \in J): x_{i}^{2}=1(i \in J),\left(x_{i} x_{j}\right)^{m_{i j}}=1(i, j \in J, i \neq j)\right\rangle
$$

(c) G is isomorphic to the group generated by reflections in a family $\left(H_{i}: i \in I\right)$ of hyperplanes in Euclidean or hyperbolic space where the angle between H_{i} and H_{j} is $\pi / m_{i j}$. (If $m_{i j}=\infty$, the hyperplanes are parallel.)
(d) G is finite if and only if the space in (c) is Euclidean and any two hyperplanes intersect, or equivalently, the matrix $A=\left(a_{i j}\right)$ with $a_{i i}=1$ and $a_{i j}=-\cos \left(\pi / m_{i j}\right)$ for $i \neq j$ is positive definite.

Any Coxeter group is described by a Coxeter diagram, having one node for each element of I, and an edge labelled $m_{i j}$ from i to j. By convention, if $m_{i j} \leq 4$ we use instead $m_{i j}-2$ unlabelled edges from i to j; that is, if $m_{i j}=2$, we omit the edge, if $m_{i j}=3$ we put a single edge, and if $m_{i j}=4$ we put a double edge. Now G is finite if and only if the Coxeter diagram is a disjoint union of diagrams of the types $A_{n}, C_{n}, D_{n}, E_{6}, E_{7}, E_{8}, F_{4}, I_{2}^{(m)}(m \geq 5), H_{3}$ and H_{4}. The A_{n} diagram is the same as the one in Figure 2. See Humphreys [3] for more details.

For any Coxeter group, there is an associated Coxeter complex, a cell complex constructed as follows. Take the images under G of the reflecting hyperplanes in part (c) of the theorem. These decompose the real vector space into pieces, which are the cells of the complex.

There is also a chamber system, obtained by taking $B=1$ and $P_{i}=\left\langle x_{i}\right\rangle$ for $i \in I$. This chamber system is geometrically realised by the Coxeter complex: the chambers are the cells of the complex of maximum dimension, and two cells satisfy one of the relations ρ_{i} if and only if they are separated by one of the reflecting hyperplanes. In fact, the hyperplanes mentioned in (c) of the theorem bound the fundamental chamber C, and the reflection of C in H_{i} has the relation ρ_{i} to C. Now G acts regularly on the set of chambers, and so these relations can be transported around the complex by elements of G. We give, as an example, the Coxeter complex for the Coxeter group with presentation

$$
\left\langle x_{1}, x_{2}: x_{1}^{2}=x_{2}^{2}=\left(x_{1} x_{2}\right)^{4}=1\right\rangle
$$

(this is the dihedral group of order 8): see Figure 3.

Figure 3: A Coxeter complex
In the figure, the eight chambers are the wedge-shaped regions. Two chambers are in the relation ρ_{1} if they are separated by a thick line, and in the relation ρ_{2}
if they are separated by a thin line. The chamber system comes from a geometry, namely the 4 -gon. See Figure 4, which adds the chamber system to Figure 1. The first two diagrams are the same as in the earlier figure: the 4 -gon drawn conventionally and as a Levi graph. The third diagram shows the chamber system: its chambers are the edges of the bipartite graph, and two chambers are related by the first or second relation (represented by a thick or thin edge respectively) if they meet in a vertex of the first or second type (a point or a line respectively).

Figure 4: A 4-gon
The most important chamber systems are buildings. Indeed, the notion of chamber system was developed by Tits to provide a setting for buildings, which he had previously regarded as incidence geometries. (It was this earlier work of Tits which inspired Buekenhout's definition of diagram geometries.)

Let G be a Coxeter group, with presentation given by Equation 1. A G building is a set C with a function $d: C \times C \rightarrow G$ satisfying certain technical conditions that will not be given here. Essentially, d is a ' G-valued metric', and we think of two elements c, c^{\prime} of C as being 'nearest' when $d\left(c, c^{\prime}\right)=x_{i}$ for some i. The axioms imply that the relation

$$
\rho_{i}=\left\{\left(c, c^{\prime}\right): d\left(c, c^{\prime}\right) \in\left\{1, x_{i}\right\}\right\}
$$

is an equivalence relation; so C has the structure of a chamber system with type set I. The axioms also imply that it has many subsystems (called apartments) which are isomorphic to the Coxeter complex of G : in fact, any two chambers lie in an apartment.

For example, a triangle or 3-gon is a Coxeter complex for the Coxeter group

$$
\left\langle x_{1}, x_{2}: x_{1}^{2}=x_{2}^{2}=\left(x_{1} x_{2}\right)^{3}=1\right\rangle,
$$

Condition	group element
$P^{\prime}=P, L^{\prime}=L$	1
$P^{\prime}=P, L^{\prime} \neq L$	x_{1}
$P^{\prime} \neq P, L^{\prime}=L$	x_{2}
$P^{\prime} \neq P, L^{\prime} \neq L, P^{\prime} * L$	$x_{1} x_{2}$
$P^{\prime} \neq P, L^{\prime} \neq L, P * L^{\prime}$	$x_{2} x_{1}$
opposite	$x_{1} x_{2} x_{1}=x_{2} x_{1} x_{2}$

Table 1: A 3-gon
the dihedral group of order 6 . If the flag $\{P, L\}$ is indexed by the identity, then the indexing of the six flags $\left\{P^{\prime}, L^{\prime}\right\}$ in the triangle is shown in Table 1.

We call two flags in a triangle opposite if no equalities or incidences hold between any of their members. (The meaning of the term is clear from a picture of the chamber system.) Now, in a projective plane, we can use the table to assign the values of the G-valued metric d to pairs of flags; the result is a building, whose apartments are its triangles. It is an easy exercise to show that a rank 2 incidence geometry is a projective plane if and only if
(a) given any flag, there is a flag opposite to it;
(b) two opposite flags are contained in a unique triangle.
(Condition (b) shows that two distinct points are incident with a unique line and dually.)

This observation can be extended. The Coxeter group of type A_{n} (see Figure 2) is isomorphic to the symmetric group of degree $n+1$. Now the buildings associated with this Coxeter group are precisely the n-dimensional projective spaces.

The finite buildings of rank at least 3 (and, more generally, the buildings of rank at least 3 whose Coxeter groups are finite - these are the so-called spherical buildings) have been classified by Tits [7]. All of these buildings arise from geometries, much as for type A_{n} in the preceding paragraph.

For further details on buildings, see Brown [1] or Ronan [5].

References

[1] K. S. Brown, Buildings, Springer, New York, 1989.
[2] F. Buekenhout, Diagrams for geometries and groups, J. Combinatorial Theory (A) 27 (1979), 121-151.
[3] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univ. Press, Cambridge, 1990.
[4] A. Pasini, Diagram Geometries, Oxford University Press, Oxford, 1994.
[5] M. A. Ronan, Lectures on Buildings, Academic Press, Boston, 1989.
[6] B. Stellmacher and F. G. Timmesfeld, Rank 3 Amalgams, Memoirs Amer. Math. Soc. 136, Amer. Math. Soc., Providence, 1998.
[7] J. Tits, Buildings of Spherical Type and Finite BN-Pairs, Springer, Berlin, 1974.

Peter J. Cameron
May 30, 2003

