
Real symmetric matrices

1 Eigenvalues and eigenvectors

We use the convention that vectors are row vectors and matrices act on the right.
Let A be a square matrix with entries in a fieldF ; suppose thatA is n×n. An

eigenvectorof A is a non-zero vectorv∈ Fn such thatvA = λv for someλ ∈ F .
The scalarλ is called aneigenvalueof A.

Thecharacteristic polynomialof A is the polynomialfA defined by

fA(x) = det(xI−A).

Thecharacteristic equationis the equationfA(x) = 0.

Theorem 1 (a) The eigenvalues of A are the roots of the equation fA(λ) = 0.

(b) The matrix A satisfies its own characteristic equation; that is, fA(A) = O,
where O is the all-zero matrix.

Part (b) of this theorem is known as theCayley–Hamilton Theorem. The
minimal polynomialof A is the monic polynomialmA of least degree such that
mA(A) = O. The Cayley–Hamilton Theorem is equivalent to the statement that
mA(x) divides fA(x). It is also true thatfA(x) and mA(x) have the same roots
(possibly with different multiplicities).

A matrix D is diagonalif all its off-diagonal entries are zero. IfD is diagonal,
then its eigenvalues are the diagonal entries, and the characteristic polynomial of
D is fD(x) = ∏n

i=1(x−dii ), wheredii is the(i, i) diagonal entry ofD.
A matrix A is diagonalisableif there is an invertible matrixQ such thatQAQ−1

is diagonal. Note thatA andQAQ−1 always have the same eigenvalues and the
same characteristic polynomial.

Theorem 2 The matrix A is diagonalisable if and only if its minimal polynomial
has no repeated roots.

2 Symmetric and orthogonal matrices

For the next few sections, the underlying field is always the fieldR of real num-
bers.
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We useA> to denote the transpose of the matrixA: that is, it is the matrix
whose( j, i) entry is the(i, j) entry of A. The matrixA is calledsymmetricif
A = A>. The matrixQ is calledorthogonalif it is invertible andQ−1 = Q>.

The most important fact about real symmetric matrices is the following theo-
rem.

Theorem 3 Any real symmetric matrix is diagonalisable. More precisely, if A is
symmetric, then there is an orthogonal matrix Q such that QAQ−1 = QAQ> is
diagonal.

The natural setting of this theorem isreal inner product spaces, which we now
describe.

3 Real inner product spaces

An inner producton the real vector spaceV is a function fromV ×V to R (we
write the inner product ofv andw asv ·w), satisfying the following three condi-
tions:

• v· (a1w1 +a2w2) = a1(v·w1)+a2(v·w2);

• w ·v = v·w;

• v·v≥ 0, andv·v = 0 if and only ifv = 0.

The first two conditions imply

• (a1v1 +a2v2) ·w = a1(v1 ·w)+a2(v2 ·w).

We summarise the first and fourth conditions by saying that the inner product is
bilinear; the second condition says that it issymmetric, and the third that it is
positive definite.

For any subspaceW of V, we writeW⊥ for the subspace

{v∈V : (v·w) = 0 for all w∈W}.

This operation (read “perp”) on subspaces has the properties

• V = W⊕W⊥ (this means thatV = W +W⊥ andW∩W⊥ = 0);

• dim(W)+dim(W⊥) = dim(V);
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• if W1⊆W2, thenW⊥1 ⊇W⊥2 ;

• (W⊥)⊥ = W.

Any real inner product space has anorthonormal basis e1, . . . ,en. These vec-
tors satisfyei · ei = 1 andei · ej = 0 for i 6= j. Such a basis is constructed by
applying theGram–Schmidt processto an arbitrary basis.

A linear transformationA of V is said to beself-adjointif v · (wA) = (vA) ·w
for all vectorsv,w. A linear transformationQ which preserves the inner product
(in the sense that(vQ) · (wQ) = v·w) is calledorthogonal.

Now if we represent linear transformations with respect to an orthonormal
basis, a transformation is self-adjoint if and only if its matrix is symmetric, and
a transformation is orthogonal if and only if its matrix is orthogonal. Moreover,
a transformation is orthogonal if and only if it maps an orthonormal basis to an
orthonormal basis.

So, in order to prove the spectral theorem, it is enough to prove the following
assertion:

Theorem 4 Let A be a self-adjoint transformation of a real inner product space
V. Then there is a decomposition V= W1⊕W2⊕ ·· ·⊕Wr , and distinct scalars
λ1, . . . ,λr , with the properties

(a) Wi ⊆W⊥j for i 6= j;

(b) vA= λ jv for all v∈Wj .

To show this, letλ be any eigenvalue ofA, andW the corresponding eigenspace
{w∈V : wA= λw}. We claim thatW⊥ is invariant underA. For takev∈W⊥; we
must show thatvA∈W⊥. But, for anyw∈W, we have

(vA) ·w = v· (wA) = v· (λw) = λ(v·w) = 0;

so the assertion is proved.
But then the restriction ofA to W⊥ is a self-adjoint transformation. By induc-

tion on the dimension, there is a decomposition ofW⊥ into subspaces with the
properties of the theorem. AddingW to this decomposition, we obtain the result.
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4 The spectral theorem

Let W be a subspace of the inner product spaceV. ThenV = W⊕W⊥. Define
a mapP on V by the rule that(w+ x)P = w, wherew ∈W andx ∈W⊥. (Any
vector has a unique representation of this form.) We callP the projectionof V
ontoW. Note that the image ofP is W, andwP= w for all w∈W; henceP2 = P.
Moreover, it is easy to check thatP is self-adjoint.

Conversely, ifP is self-adjoint and satisfiesP2 = P, thenP is the projection
of V onto some subspaceW (namely, the image ofP). So these conditions define
projections in an intrinsic way. This means that we can recognise the matrix of a
projection; it is a matrix satisfyingP = P> = P2.

The main theorem about real symmetric matrices can be re-phrased in terms
of projections. In this form it is often referred to as thespectral theorem.

Theorem 5 Let A be a real symmetric matrix with distinct eigenvaluesλ1,λ2, . . . ,λr .
Then there are projection matrices P1, . . . ,Pr satisfying

(a) P1 +P2 + · · ·+Pr = I;

(b) PiPj = O for i 6= j;

(c) A= λ1P1 + λ2P2 + · · ·+ λrPr .

We takePi to be the projection onto the eigenspaceVi associated withλi (the
set of all vectorsv satisfyingvA= λiv. Since these spaces are pairwise orthogo-
nal and satisfyV1⊕V2⊕ ·· ·⊕Vr , conditions (a) and (b) hold. Part (c) is proved
by noting that the two sides agree on any vector inVi , for any i, and so agree
everywhere.

5 Commuting symmetric matrices

There is a remarkable extension of the spectral theorem to sets of symmetric ma-
trices. The essential condition is that the matrices should commute.

Theorem 6 Let A1, . . . ,As be a set of symmetric matrices satisfying AiA j = A jAi

for all i , j. Then there is an orthogonal matrix P such that PAP−1 is diagonal for
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i = 1, . . . ,s. Equivalently, there are projections P1, . . . ,Pr such that conditions (a)
and (b) of Theorem 5 hold, and for j= 1, . . . we have

A j = ∑
i=1r

λi j Pi

for some scalarsλi j .

In terms of the inner product space, the theorem reads as follows. Given a set
of s pairwise commuting self-adjoint transformations; thenRn is the orthogonal
direct sum of subspacesVi , on each of which all of the transformations are scalars.

The proof is by induction ons, the spectral theorem itself being the cases= 1.
So suppose that the theorem is true fors−1. Now decomposeRn into eigenspaces
of As, using the spectral theorem; letVj correspond to the eigenvalueλ j of As.

We claim thatVj is invariant underA1, . . . ,As−1. For letv∈Vj andi ≤ s−1.
Then

(vAi)As = (vAs)Ai = (λ jv)Ai = λ j(vAi),

where the first equality holds becauseAi and As commute. Now this equation
shows thatvAi is an eigenvector ofAs with eigenvalueλ j ; sovAi ∈Vj , as claimed.

Now Vj is an inner product space, and the restrictions ofA1, . . . ,As−1 to it are
pairwise commuting self-adjoint transformations of it. So we can writeVj as an
orthogonal direct sum of subspaces, each of which consists of eigenvectors for
A1, . . . ,As−1 (and also of course forAs, since all vectors inVj are eigenvectors for
As). The proof is complete.

This result is crucial in the theory of association schemes.

6 Hermitian, normal and unitary matrices

Although our main interest lies in real symmetric matrices, there is a parallel
theory over the complex numbers, which is of great importance. The definition of
an inner product on a complex vector space is slightly different: the definition is

• v· (a1w1 +a2w2) = a1(v·w1)+a2(v·w2);

• w ·v = v·w, where denotes complex conjugation;

• v·v is a non-negative real number, and is zero if and only ifv = 0.

The first two conditions imply
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• (a1v1 +a2v2) ·w = a1(v1 ·w)+a2(v2 ·w);

• v·v is real for any vectorv.

As before, a linear transformation isself-adjointif v · (wA) = (vA) ·w for any
v andw. We say thatQ is unitary if it preserves the inner product, that is,
(vQ) · (wQ) = v·w for all v,w.

If we take an orthonormal basis for the space, then the matrix representing a

self-adjoint transformation isHermitian, that is,A
> = A; and the matrix repre-

senting a unitary transformation satisfiesQ
> = Q−1 (we also call such a matrix

unitary).
Now the complex spectral theorem asserts that, ifA is Hermitian, then there

is a unitary matrixQ such thatQAQ−1 is diagonal. The reformulation in terms of
projections and the extension to a set of commuting Hermitian matrices are as in
the real case.

Over the real numbers, a matrix which can be diagonalised by an orthogonal
matrix must necessarily be symmetric. In the complex case, however, we can go
a little further. The matrixZ is said to benormalif it commutes with its conjugate
transpose (that is,ZZ

> = Z
>

Z).

Theorem 7 Let Z be a square matrix overC. Then there exists a unitary matrix
Q such that QZQ−1 is diagonal if and only if Z is normal.

For any complex matrixZ can be written uniquely in the formZ = X + iY,
whereX andY are self-adjoint. (This is the analogue of the real and imaginary
parts of a complex number.) NowZ is normal if and only ifXY = YX. If this
holds, then there is a unitary matrix which diagonalises bothX andY, and hence
Z. The converse is trivial.

7 An application: Moore graphs

Here is an application to show how the theory of real symmetric matrices can be
used in combinatorics. This analysis is due to Hoffman and Singleton [1].

Let Γ be a connected regular graph with valencyk, andv a vertex ofΓ. Each
neighbour ofv is joined to at mostk−1 non-neighbours ofv. So, if Γ has diame-
ter 2, then it has at most 1+k+k(k−1) = k2+1 vertices altogether, with equality
if and only if it hasgirth 5 (no circuits shorter than 5). Dually, ifΓ has girth 5,
then it has at leastk2 +1 vertices, with equality if and only if it has diameter 2.
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A Moore graphof diameter 2 is a graph attaining these bounds, that is, a
connected regular graph with diameter 2 and girth 5. It hasn = k2 + 1 vertices,
wherek is the valency. Our question is:which Moore graphs exist?

The adjacency matrixA of such a graph satisfies

A2 = kI +(J− I −A),

that is,A2+A−(k−1)I = J, whereJ is the all-1 matrix. ThusJ commutes withA,
and soA andJ are simultaneously diagonalisable. NowJ has the all-1 vectorj as
an eigenvector with multiplicityn; all its other eigenvalues are zero. Clearlyj is
an eigenvalue ofA with multiplicity 1. Its other eigenvalues thus satisfy

λ2 + λ− (k−1) = 0,

soλ = 1
2(−1±

√
4k−3). If their multiplicities aref andg, we have

f +g = n−1 = k2,
1
2(−1+

√
4k−3) f + 1

2(−1−
√

4k−3)g = −k,

the second equation coming from the fact that Trace(A) = 0 (since all the diagonal
entries are zero). From these equations we find that

( f −g)
√

4k−3 = 1
2k(k−2).

If k = 2, thenn = 5 and the unique graph is the pentagon. Suppose not. Then
f −g is an integer, so 4k−3 must be a perfect square, indeed the square of an odd
number; say

4k−3 = (2s+1)2,

sok = s2+s+1. In addition, 2s+1 must dividek(k−2) = (s2+s+1)(s2+s−1).
It follows that 2s+1 divides 3·5 = 15, so (sinces> 0) we have

2s+1 = 3, 5, 15
k = 3, 7, 57
n = 10, 50, 3250

It is known that there is a unique 3-valent Moore graph on 10 vertices (the Petersen
graph) and a unique 7-valent Moore graph on 50 vertices (the Hoffman–Singleton
graph). The existence of a 57-valent Moore graph on 3250 vertices is unknown.
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