Real symmetric matrices

1 Eigenvalues and eigenvectors

We use the convention that vectors are row vectors and matrices act on the right.
Let A be a square matrix with entries in a fidtd suppose thatisnx n. An
eigenvectomf A is a non-zero vectov € F" such thatvA = Av for someA € F.
The scalad is called areigenvalueof A.
Thecharacteristic polynomiabf A is the polynomialfa defined by

fa(x) = detxl — A).
Thecharacteristic equatioiis the equatiorfa(x) = 0.
Theorem 1 (a) The eigenvalues of A are the roots of the equatjg® f= 0.

(b) The matrix A satisfies its own characteristic equation; that jgAf = O,
where O is the all-zero matrix.

Part (b) of this theorem is known as tiayley—Hamilton Theorem The
minimal polynomialof A is the monic polynomiaima of least degree such that
ma(A) = O. The Cayley—Hamilton Theorem is equivalent to the statement that
ma(x) divides fa(x). It is also true thatfa(x) and ma(x) have the same roots
(possibly with different multiplicities).

A matrix D is diagonalif all its off-diagonal entries are zero. I is diagonal,
then its eigenvalues are the diagonal entries, and the characteristic polynomial of
Dis fp(x) = i1 (x—di), whered; is the(i,i) diagonal entry oD.

A matrix A is diagonalisabléf there is an invertible matriQ such thaQAQ !
is diagonal. Note thaf andQAQ ! always have the same eigenvalues and the
same characteristic polynomial.

Theorem 2 The matrix A is diagonalisable if and only if its minimal polynomial
has no repeated roots.

2 Symmetric and orthogonal matrices

For the next few sections, the underlying field is always the fielaf real num-
bers.
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We useA' to denote the transpose of the mathix that is, it is the matrix
whose(j,i) entry is the(i, j) entry of A. The matrixA is calledsymmetricif
A=A". The matrixQ is calledorthogonalif it is invertible andQ = Q.

The most important fact about real symmetric matrices is the following theo-
rem.

Theorem 3 Any real symmetric matrix is diagonalisable. More precisely, if A is
symmetric, then there is an orthogonal matrix Q such that QA8 QAQ' is
diagonal.

The natural setting of this theorenmresal inner product spacesvhich we now
describe.

3 Realinner product spaces

An inner producton the real vector spadé is a function fromV xV to R (we
write the inner product of andw asv-w), satisfying the following three condi-
tions:

o V- (ayWy +apwo) = ag(V-wi) +ag(V-wop);

o W-V=V-W,

e V-v>0,andv-v=0ifandonly ifv=_0.
The first two conditions imply

o (qgvi+apvo) -w=ag(vi-w)—+az(v2-w).

We summarise the first and fourth conditions by saying that the inner product is
bilinear; the second condition says that itggmmetri¢c and the third that it is
positive definite

For any subspad® of V, we writeW- for the subspace

{veV:(v-w)=0forallweW}.
This operation (read “perp”) on subspaces has the properties
e V =WaW- (this means thaf =W +W-+ andWNW-+ = 0);
o dim(W) +dim(W+) = dim(V);
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o if Wi C W, thenW;- D W
° (WJ‘)J‘ =W.

Any real inner product space has arthonormal basis g...,e,. These vec-
tors satisfye - = 1 andg -e; = 0 fori # j. Such a basis is constructed by
applying theGram—Schmidt proceds an arbitrary basis.

A linear transformatiorA of V is said to beself-adjointif v- (WA) = (VA) -w
for all vectorsv,w. A linear transformatior® which preserves the inner product
(in the sense thawvQ) - (wQ) = v-w) is calledorthogonal

Now if we represent linear transformations with respect to an orthonormal
basis, a transformation is self-adjoint if and only if its matrix is symmetric, and
a transformation is orthogonal if and only if its matrix is orthogonal. Moreover,
a transformation is orthogonal if and only if it maps an orthonormal basis to an
orthonormal basis.

So, in order to prove the spectral theorem, it is enough to prove the following
assertion:

Theorem 4 Let A be a self-adjoint transformation of a real inner product space
V. Then there is a decomposition¥YW; $Wo & --- W, and distinct scalars
A1,...,Ar, with the properties

(@) W C W~ fori # j;
(b) VA= Ajv for all ve W;.

To show this, leh be any eigenvalue &, andW the corresponding eigenspace
{weV :wA=Aw}. We claim thatV= is invariant undeA. For takev ¢ W+; we
must show thatA € W-. But, for anyw € W, we have

(VA) -w=V-(WA) =V- (Aw) =A(v-w) =0;

so the assertion is proved.

But then the restriction oA to W+ is a self-adjoint transformation. By induc-
tion on the dimension, there is a decompositioMof into subspaces with the
properties of the theorem. AddiWy to this decomposition, we obtain the result.
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4 The spectral theorem

Let W be a subspace of the inner product spdceThenV =W @ W-. Define
a mapP onV by the rule thafw+ x)P = w, wherew € W andx € W+. (Any
vector has a unique representation of this form.) We ahe projectionof V
ontoW. Note that the image d? isW, andwP = w for all w € W; henceP? = P,
Moreover, it is easy to check thatis self-adjoint.

Conversely, ifP is self-adjoint and satisfie®? = P, thenP is the projection
of V onto some subspat® (namely, the image d?). So these conditions define
projections in an intrinsic way. This means that we can recognise the matrix of a
projection; it is a matrix satisfying@ = P" = P2,

The main theorem about real symmetric matrices can be re-phrased in terms
of projections. In this form it is often referred to as sgpectral theorem

Theorem 5 Let A be a real symmetric matrix with distinct eigenvalNg3\o, . .., A;.
Then there are projection matrices,P. ., P satisfying

@P+P+--- 4B =1,
(b) RPj = Ofori# j;
(C) A= )\1P1—|—)\2P2—{—---+)\rpr.
We takeP to be the projection onto the eigenspatassociated witfA; (the
set of all vectorss satisfyingvA = Ajv. Since these spaces are pairwise orthogo-
nal and satisfy1 V> @ - -- ®V,, conditions (a) and (b) hold. Part (c) is proved

by noting that the two sides agree on any vecto¥infor anyi, and so agree
everywhere.

5 Commuting symmetric matrices

There is a remarkable extension of the spectral theorem to sets of symmetric ma-
trices. The essential condition is that the matrices should commute.

Theorem 6 Let Ay,...,As be a set of symmetric matrices satisfying\fA= AjA
for all i, j. Then there is an orthogonal matrix P such that PARs diagonal for
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i=1,...,s. Equivalently, there are projectionsg,P.., P such that conditions (a)
and (b) of Theorem 5 hold, and for5 1,... we have

Aj = Z AijP
i=1"
for some scalarg;.

In terms of the inner product space, the theorem reads as follows. Given a set
of s pairwise commuting self-adjoint transformations; tfi&his the orthogonal
direct sum of subspac¥®¥g on each of which all of the transformations are scalars.

The proof is by induction os, the spectral theorem itself being the casel.

So suppose that the theorem is truederl. Now decomposR" into eigenspaces
of As, using the spectral theorem; Mt correspond to the eigenvalg of As.

We claim thatv; is invariant undef,...,As_1. For letv e Vj andi <s—1.
Then

(VA)As = (VAS)A = (AjV)Ai = Aj(VA),

where the first equality holds becaudgand As commute. Now this equation

shows thavA is an eigenvector ofs with eigenvalue\ j; sovA € Vj, as claimed.
Now V; is an inner product space, and the restrictiond0f..,As_1 to it are

pairwise commuting self-adjoint transformations of it. So we can Wfjtas an

orthogonal direct sum of subspaces, each of which consists of eigenvectors for

As,...,As_1 (and also of course foks, since all vectors iVj are eigenvectors for

As). The proof is complete.

This result is crucial in the theory of association schemes.

6 Hermitian, normal and unitary matrices

Although our main interest lies in real symmetric matrices, there is a parallel
theory over the complex numbers, which is of great importance. The definition of
an inner product on a complex vector space is slightly different: the definition is

o V- (aywi +apwp) = ag(V-wq) +ap(V-wo);
e W-V=V-W, where— denotes complex conjugation;
e V-Vis a non-negative real number, and is zero if and only=0.

The first two conditions imply
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o (a1vi+apvo) -w=ag(vy-W)+az(ve-w);
e V-Vvis real for any vectov.

As before, a linear transformationself-adjointif v- (wA) = (VA) - w for any
v andw. We say thaQ is unitary if it preserves the inner product, that is,
(VQ) - (WwQ) = v-w for all v,w.

If we take an orthonormal basis for the space, then the matrix representing a
self-adjoint transformation islermitian, that is,,f\T = A, and the matrix repre-

senting a unitary transformation satisf@g = Q1 (we also call such a matrix
unitary).

Now the complex spectral theorem asserts thad, i§ Hermitian, then there
is a unitary matrixQ such thaQAQ 1 is diagonal. The reformulation in terms of
projections and the extension to a set of commuting Hermitian matrices are as in
the real case.

Over the real numbers, a matrix which can be diagonalised by an orthogonal
matrix must necessarily be symmetric. In the complex case, however, we can go
a little further. The matrixX is said to benormalif it commutes with its conjugate

transpose (that i€Z ' =Z' Z).

Theorem 7 Let Z be a square matrix ovéE. Then there exists a unitary matrix
Q such that QZQ! is diagonal if and only if Z is normal.

For any complex matrix can be written uniquely in the ford = X 4 1Y,
whereX andY are self-adjoint. (This is the analogue of the real and imaginary
parts of a complex number.) Noi& is normal if and only ifXY =Y X. If this
holds, then there is a unitary matrix which diagonalises bodndY, and hence
Z. The converse is trivial.

7 An application: Moore graphs

Here is an application to show how the theory of real symmetric matrices can be
used in combinatorics. This analysis is due to Hoffman and Singleton [1].

Let I be a connected regular graph with valee¢yandv a vertex ofl . Each
neighbour ofv is joined to at mosk — 1 non-neighbours of. So, ifI" has diame-
ter 2, then it has at mostidk+k(k— 1) = k? 4 1 vertices altogether, with equality
if and only if it hasgirth 5 (no circuits shorter than 5). Dually, if has girth 5,
then it has at least® + 1 vertices, with equality if and only if it has diameter 2.
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A Moore graphof diameter 2 is a graph attaining these bounds, that is, a
connected regular graph with diameter 2 and girth 5. Itrhask? + 1 vertices,
wherek is the valency. Our question isthich Moore graphs exist?

The adjacency matriR of such a graph satisfies

A2=Kl+I—-1-A),

that is, A%+ A— (k—1)I = J, whered is the all-1 matrix. Thug commutes witiA,
and soA andJ are simultaneously diagonalisable. Ndwas the all-1 vectoy as
an eigenvector with multiplicity; all its other eigenvalues are zero. Cleaylis
an eigenvalue of with multiplicity 1. Its other eigenvalues thus satisfy

M4+A—(k—1)=0,
SOA = %(—11 Vv4k — 3). If their multiplicities aref andg, we have

f+g = n—1=K,
J-1+vak=3)f+3(-1-vak—3)g = Kk,

the second equation coming from the fact that TfAge- O (since all the diagonal
entries are zero). From these equations we find that

(f —g)Vak—3= 3k(k—2).

If k=2, thenn="5 and the unique graph is the pentagon. Suppose not. Then
f —gis an integer, sokd— 3 must be a perfect square, indeed the square of an odd
number; say

4k —3=(2s+1)%
sok=s?+s+1. In addition, 3+ 1 must dividek(k—2) = (£ +s+1)(s?+s—1).
It follows that Z+ 1 divides 35 = 15, so (sinces > 0) we have

2s+1 = 3, 5 15
k = 3 7, 57
n = 10, 50, 3250

Itis known that there is a unique 3-valent Moore graph on 10 vertices (the Petersen
graph) and a unique 7-valent Moore graph on 50 vertices (the Hoffman-Singleton
graph). The existence of a 57-valent Moore graph on 3250 vertices is unknown.
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