
Markov chains and random walks

1 Choosing at random

Suppose I have a fair coin. How can I choose a random Latin square of order 99?
A fair coin is a device which can in one step (or toss) produce one bit of infor-

mation (a 0 or a 1, or informally, “heads” or “tails”), in such a way that the results
of different tosses are independent – this means that each of the 2n sequences of
results produced byn tosses occurs with the same probability, namely 1/2n.

Given a fair coin, there is a simple algorithm for choosing a random integerx
in the range[0,2n−1]. We just toss the coinn times and interpret the sequence of
bits as the expansion ofx in base 2.

What about choosing an integer in the range[0,N−1], whereN is arbitrary?
We cannot do this with a bounded number of coin tosses ifN is not a power of 2,
since the probability of any event defined byncoin tosses is a rational number with
denominator 2n. So we have to make a small compromise, as follows. Choosen
to be the least integer such that 2n≥ N. Choose an integer in the range[0,2n−1]
as before. If it is smaller thanN, we accept this result; otherwise we try again, and
continue until a result is obtained. It is not hard to show that, ifp = N/2n, then

• the resulting integer is uniformly distributed in the range[0,N−1];

• the expected number of attempts is 1/p;

• the probability that more thanm attempts are required isqm, whereq =
1− p.

(The last two statements follow because the number of attempts is a geometric
random variable). Sincep> 1/2, the expected number of attempts is less than 2
and the probability of needing a long series of tries is exponentially small.

Now we can choose a random structure of a certain type in some situations. If
we can count the structures, then we may suppose there areN altogether; choose
a random numberx from [0,N−1], skip over the firstx structures in the count,
and take the next one. If each structure is determined by a sequence of choices,
and making these choices uniformly gives the uniform distribution, then we can
make the choices at random as long as we know how many choices there are at
each stage.

For example, how can we choose a random permutationσ of the set{1, . . . ,n}?
The image 1σ of 1 can be any of 1, . . . ,n; choose this image at random. Then 2σ
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can be any of 1, . . . ,n except 1σ; choose a random numberx from 1, . . . ,n−1 and
add one ifx≥ 1σ, then set 2σ = x. Continuing in this way gives the required
random permutation.

Choosing a random graph onn vertices is even easier: simply decide with a
single coin toss whether each pair of vertices is joined by an edge or not. (Indeed,
the number of graphs is 2n(n−1)/2, and counting them is equivalent to choosing
one at random.)

In other cases, e.g. Latin squares, we don’t even know how many structures
there are, so choosing one at random cannot be done by these methods; we need a
new idea.

2 Markov chains and random walks

We consider only Markov chains with a finite number of states. LetS= {s1, . . . ,sm}
be a finite set ofstates. Suppose we are given a matrixP= (pi j ) of orderm, whose
entries are non-negative real numbers satisfying

m

∑
j=1

pi j = 1.

The interpretation is that we have a marker on one of the states; at a certain mo-
ment it moves to a new state, where the probability of moving from statesi to state
sj is pi j . The displayed equation just reflects the fact that the marker is bound to
move to some state!

We can now iterate this procedure. The marker starts out on some state, possi-
bly chosen at random from an arbitrary probability distribution. At each positive
integer time it makes a transition according to the specification above. We are in-
terested in how it behaves in the long term. There are two extremes of behaviour:

• Suppose thatpi i+1 = 1 for i = 1, . . . ,m−1 andpm1 = 1, all other probabil-
ities being zero. Then the marker simply marches around them-cycle in a
mechanical way; if it starts at statesi then aftern steps it is certainly at state
sj , where j ≡ i +n (modm).

• Suppose thatpi j = 1/m for all i, j. Then, no matter where the marker starts,
after one transition it is in a random state chosen uniformly froms1, . . . ,sm,
and this remains true after any number of transitions.
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For most interesting chains, we don’t have either of these extremes, but in-
stead, under certain hypotheses the marker’s position approaches a limiting distri-
bution as the number of transitions increases.

The displayed equation above can be rewritten asP j> = j>, where j is the
all-one vector,j = (1,1, . . . ,1). So 1 is a right eigenvalue ofP. Since the left and
right eigenvalues of a matrix are the same, there is a vectorq = (q1, . . . ,qm) such
thatqP= q.

It can be proved that we can chooseq to have all its entries non-negative,
so we can normalise the entries so that∑m

i=1qi = 1. Then we can interpretq
as a probability distribution on the states. Suppose that the marker starts in this
distribution. Then after one transition, its probability of being in statesj is

m

∑
i=1

qi pi j = q j ,

that is, the same as before the transition! So if the marker starts in the distribution
q, then it remains in this distribution. Soq is certainly a candidate for a limiting
distribution.

We need a couple of conditions on the chain to guarantee good limiting be-
haviour and rule out cases like the first example above. Letpn

i j be the probability
of moving from statesi to statesj after n transitions. (Exercise: this is just the
(i, j) entry of the matrixPn.) The chain is said to beirreducible if, for any two
statessi andsj , there existsn such thatpn

i j > 0, that is, it is possible to move from
si to sj . The chain is said to beaperiodicif, for any statesi , the greatest common
divisor of the set

{n : pn
ii > 0}

is equal to 1.

Theorem 1 Let P be an irreducible and aperiodic Markov chain, and q the nor-
malised left eigenvector of P with eigenvalue1. Then, starting from an arbitrary
initial distribution, the distribution after n steps approaches q as n→ ∞.

The particular type of Markov chain we consider is the random walk on an
undirected graph. The states are the vertices of the graph, and a transition consists
of choosing an edge through the vertex on which the marker sits (all edges being
equally likely) and moving to the other end of this edge. In other words,pi j is the
reciprocal of the valency of theith vertexvi if vi andv j are adjacent, and is zero
if they are non-adjacent. It is not hard to see that the random walk is irreducible if
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and only if the graph is connected, and is aperiodic if and only if the graph is not
bipartite. (Since the graph is undirected, we can always return to the start vertex
after 2 steps with non-zero probability.)

With our fair coin we can do a random walk on a graph, since we have to
choose among a number of edges at each step, giving each edge the same proba-
bility.

It is also simple to compute the limiting state. We claim that the vector whose
ith component is the valency ofvi is a left eigenvector with eigenvalue 1. This is
an easy exercise; here is a heuristic argument. If the probability of starting atvi is
cki , whereki is the valency ofvi andc is a constant, then the probability of passing
along any given edge isc, and so the probability of arriving atv j is ckj .

In other words, if a graph is connected and non-bipartite, then the random
walk on that graph has the property that, in the limit, the probability of being at
any vertex is proportional to its valency. In particular, if the graph is regular, then
the limiting distribution is uniform.

3 Random Latin squares

A Latin squareof ordern is ann×n array, each cell containing a symbol from the
set{1, . . . ,n}, such that each symbol occurs once in each row and once in each
column of the array.

In order to use this method to choose a random Latin square, we need to find a
set of “moves” connecting up the set of all Latin squares of given order. This was
done by Jacobson and Matthews [1]; we outline their method.

First we re-formulate the definition of a Latin square. We regard it as a func-
tion from N3 to {0,1}, whereN = {1, . . . ,n}, having the property that, for any
givenx,y∈ N, we have

∑
z∈N

f (x,y,z) = 1, (1)

with similar equations for the sum overy (for givenx,z) and the sum overx (for
giveny,z). The interpretation is thatf (x,y,z) = 1 if and only if the entry in rowx
and columny of the array isz.

We also have to enlarge the space in which we walk, by admitting also “im-
proper” Latin squares. Such a square is a function fromN3 to {−1,0,1} having
the properties that it takes the value−1 exactly once, and that Equation (1) and
the two similar equations hold. Effectively, we allow one “negative” entry which
must be compensated by additional “positive” entries.
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To take one step in the Markov chain starting at a functionf , do the following:

(a) If f is proper, choose any(x,y,z) with f (x,y,z) = 0; if f is improper, use the
unique triple withf (x,y,z) =−1.

(b) Letx′,y′,z′ ∈ N satisfy

f (x′,y,z) = f (x,y′,z) = f (x,y,z′) = 1.

(If f is proper, these points are unique; iff is improper, there are two
choices for each of them.)

(c) Now increase the value off by one on the triples(x,y,z), (x,y′,z′), (x′,y,z′)
and(x′,y′,z), and decrease it by one on the triples(x′,y,z), (x,y′,z), (x,y,z′)
and(x′,y′,z′). We obtain another proper or improper Latin square, accord-
ing as f (x′,y′,z′) = 1 or 0.

Jacobson and Matthews showed that the graph which has the set of all proper
and improper Latin squares as vertices and the moves of the above type as edges
is connected and non-bipartite, and so the random walk on this graph has a unique
limiting distribution. Moreover, in this distribution, all (proper) Latin squares have
the same probability.

4 Random isomorphism classes

Another application of Markov chains was given by Jerrum [2]. Suppose that we
can choose a random element of a large set (for example, a random graph on a
given set of vertices). Now the number of times that an isomorphism class of ob-
jects appears in the list is inversely proportional to the number of automorphisms
of an object in the class. So we are relatively unlikely to find highly symmet-
ric objects. Jerrum gave a Markov chain whose limiting distribution makes all
isomorphism types equally likely.

More generally, letG be a group which operates on a setΩ. Starting from an
elementω ∈Ω, a move consists of the following two operations:

• move to a random elementg in the stabiliser ofω;

• move to a random elementω′ fixed byg.
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In other words, we form a bipartite graph onΩ∪G, in which ω is joined tog if
ωg = ω; a step in Jerrum’s Markov chain consists of two steps in the random walk
on this graph.

For example, suppose we want to choose a random graph onn vertices, with
each isomorphism class equally likely. HereΩ is the set of all 2n(n−1)/2 graphs on
the given vertex setV, andG is the symmetric groupSn consisting of all permu-
tations ofV. Starting with a graphΓ, we calculate the automorphism groupG of
Γ (for example, using a program such asnauty [3]), choose a random elementg
of G, and then choose a random graphΓ′ preserved byg.
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