
Combinatorial and statistical design

1 Combinatorial design

To readers of books such as those of Hughes and Piper [3] or Beth, Jungnickel
and Lenz [1], the term “design” means one or other of the following concepts:

• a setP of pointsand a setB of blocks, with an incidence relationbetween
them (a subsetI of P×B), satisfying certain conditions; or

• a setP of pointsand a set or familyB of subsets ofP calledblocks, satisfying
certain conditions.

Typical conditions are given below. A structure of the first type is called anincidence
structure.

The two versions amount to the same thing. Given a design of the first type
(specified by an incidence relation), we associate with eachb∈ B the subset

X(b) = {p∈ P : (p,b) ∈ I}

of P, to obtain an indexed family

B∗ = (X(b) : b∈ B)

of subsets ofP. Note that, in general, we have a family rather than a set of subsets;
there may berepeated blocks(that is,X(b) = X(b′) for someb 6= b′). Conversely,
if (Xb : b∈ B) is a family of subsets ofP indexed byB, we take

I = {(p,b) : p∈ Xb)}

to obtain an incidence structure.
The language used in design theory reflects this dual interpretation. Thus, we

often say that a pointp is incidentwith a blockb if (in the second interpretation)
p lies in the subset ofP corresponding tob.

Note that sometimes the word “design” is restricted to structures with no re-
peated blocks. (This is the convention in [3], for example.)

Typical conditions that are imposed include:

(a) any block is incident with exactlyk points (and it is often further assumed
that 1< k< v, wherev = |P|);
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(b) anyt points are incident with exactlyλ blocks, wheret andλ are parameters
with λ> 0.

A structure satisfying (a) and (b) is called at-(v,k,λ) design, or a t-design
for short. The unadorned word “design” is used by several authors to mean “2-
design”.

A structure satisfying (b) is called at-wise balanced design. For t = 2, it is
a pairwise balanced design: for t = 2 andλ = 1 it is a linear space. (Often it
is forbidden that a block is incident with fewer thant points; such blocks can
be removed without affecting (b).) More generally, apartial linear spaceis an
incidence structure with the property that two points are incident with at most one
block.

A structure satisfying (a) and having no repeated blocks is called ak-uniform
hypergraph. However, typical concerns of hypergraph theory are different from
those of design theory.

For example, letP = {1, . . . ,7} and

B = {{1,2,3},{1,4,5},{1,6,7},{2,4,6},{2,5,7},{3,4,7},{3,5,6}},
It is readily checked that this is a 2-(7,3,1) design, or linear space. This design is
theprojective planeof order 2.

Thedual of an incidence structure(P,B, I)is the incidence structure(B,P, I∗),
whereI∗ = {(b, p) : (p,b) ∈ I}. Note that the dual of a partial linear space is also
a partial linear space. We mention here an important result from design theory:

Theorem 1 Let(P,B, I) be a2-(v,k,λ) design with1< k< v−1 andλ> 0. Then
|B| ≥ |P|, with equality if and only if the dual is also a2-design.

The inequality in this theorem is known asFisher’s Inequality. A design at-
taining the bound is variously calledsquare, symmetric, or (in Dembowski [2])
projective. The example given above is a square design; it can be checked that it
is isomorphic to its dual.

There is yet another representation of an incidence structure that is important
to us. Let(P,B, I) be an incidence structure. Theincidence graphor Levi graph
of the structure is the bipartite graph with vertex setP∪B, in which p is adjacent
to b whenever(p,b) ∈ I .

Conversely, suppose that we have a bipartite graph with bipartite setsP andB.
Taking I to be the set of edges (each edge ordered so that its first vertex is inP),
we obtain an incidence structure.

The Levi graph of the dual is the same as that of the original structure; only
the labelspoint andblockare interchanged.
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2 Experimental design

In a typical agricultural or medical experiment, we have a discrete setΩ of plots
or experimental units, to which certain treatments will be applied. Anexperimen-
tal designis a functionF from Ω to the setT of treatments, whereF(ω) is the
treatment to be applied to the plotω. The designF gives rise to afactor or par-
tition of Ω, where two plots are in the same part if and only if they receive the
same treatment. Thus, the choice of experimental design can be divided into two
stages: the choice of a factor, and the allocation of treatments to parts (which may
involve the choice of a random bijection).

Two features of the set-up complicate this simple picture.
First, the setT may be structured. For example:

(a) One of the treatments may be ‘no treatment’ or ‘placebo’. This may require
special consideration.

(b) The treatments may consist of several different levels of each of a number of
fertilisers, say. In this case we have a partition ofT, each part of which is
ordered or enumerated. The partition ofT induces a partition ofΩ coarser
than the design factor.

(c) T may consist of, say, combinations of a fertiliser and a watering regime. In
this case we have two partitions ofT.

We ignore this for the moment and consider the second complication, which
arises even when the treatment set is unstructured. The set of plots may itself be
structured. In a medical trial, patients are either male or female, and are recruited
in different hospitals where practices may vary. A fertiliser trial may be conducted
on several farms in different parts of the country, where soil conditions are quite
different. In general, there may be ‘nuisance factors’ or partitions ofΩ which have
an effect on the experiment but are outside the control of the experimentalist. The
statistician has to cope not only with random variation but also with systematic
variation resulting from such factors.

Specifically, suppose that seven brands of fertiliser are to be tested. Twenty-
one fields are available, three on each of seven farms. We want to apply each
fertiliser to three fields on different farms. For reasons to be discussed later, the
best design is that shown in Figure 1.

We recognise here the projective plane of order 2 from the last section. How-
ever, the viewpoint is different: the basic units are the 21 plots, and there are two
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Figure 1: An experimental design

distinguished partitions, one corresponding to the seven farms, and the other (the
design factor) to the seven types of fertiliser.

Statisticians would regard the farms (or, more precisely, the parts of the cor-
responding partition ofΩ) asblocks. A set with two partitions is called ablock
design.

Our assumption that no fertiliser is used more than once on each farm says that
the meet of the two partitions (in the lattice of all partitions ofΩ) is equality, the
partition whose parts are singletons. A block design with this property is called
binary.

Given a binary block design, letP andB denote the sets of treatments and
blocks respectively. Define an incidence relationI ⊆P×B by the rule that(p,b)∈
I if the intersection of partp of P and partb of B is non-empty (informally, treat-
mentp occurs on some plot in blockb).

Conversely, given an incidence structure(P,B, I), we obtain a binary block
design as follows; take the setΩ of plots to beI ; the partp of the partitionP
consists of all pairs inI with first componentp; the partb of the partitionB
consists of all pairs with second componentb. (We can also think ofΩ as the set
of edges of the Levi graph; the two partitions correspond to the vertices in the two
bipartite blocks.)

The block design given above has two further properties:

• There are seven treatments (types of fertiliser), but each block (farm) can
only accommodate three, so not every treatment appears in every block. A
block design with this property is calledincomplete. (It is better to say that
it is an incomplete-block design.)

• It is balanced, that is, each pair of treatments occurs together the same num-
ber of times (in this case, once) in each block. Intuitively, this is a good
feature enabling fair comparison between the treatments. This can be made
more precise using this notion ofefficiency.
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Clearly a binary balanced incomplete-block design (for short, BIBD or BIB) trans-
lates as above to a 2-(v,k,λ) design withk< v.

3 Other types of design

The statistician’s notion of design is thus more general than the combinatorialist’s:
incidence structures correspond to binary block designs. In this section we look
at two different types of experimental design.

3.1 Latin squares

Suppose that five judges taste five different wines; the tests are arranged in five
rounds, so that each judge tastes each wine once. A plot in this experiment consists
of one judge tasting one wine; there are 25 plots. The setΩ of plots carries three
partitions, each with five parts of size 5:

• a partition corresponding to the five judges;

• a partition corresponding to the five wines;

• a partition corresponding to the five tasting rounds.

Here the wines are the treatments we want to compare, while the judges and
rounds are the nuisance factors or blocks. Taking any two of the three partitions,
we get a complete-block design (whose Levi graph is complete bipartite); the
structure of the design is not captured by the corresponding incidence structures.

We can represent the design as a square array in which each cell contains one
of the numbers 1, . . . ,5, each symbol occurring once in each row or column, as in
Figure 2. Such an array is called aLatin square; its cells correspond to the plots,
and the three partitions are given by rows, columns, and symbols.

It is possible to represent a Latin square as an incidence structure in a different
way: we take the point set to be the setΩ of cells, and the blocks to be the parts
of the three different partitions. The result is a special type of partial linear space
called anet. It has the property that, ifb is a block andp a point not incident
with b, then exactly one block is incident withp and disjoint fromp. (This is a
version of Playfair’s Axiom, a form of Euclid’s parallel postulate.)
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1 2 3 4 5
2 3 1 5 4
3 4 5 2 1
4 5 2 1 3
5 1 4 3 2

Figure 2: A Latin square

3.2 Youden “squares”

A symmetric balanced incomplete-block design (SBIBD), or square 2-design, can
(like any incidence structure) be represented by its incidence graph, a bipartite
graph with partsX1 andX2. The graph has the properties

• |X1|= |X2|= v;

• for {i, j}= {1,2}, any point inXi has exactlyk neighbours inXj ;

• for {i, j}= {1,2}, any two points inXi have exactlyλ neighbours inXj .

Any regular bipartite graph has a 1-factorisation, a partition of the edge set
into k parts or 1-factors ofv edges each, where the edges of each 1-factor partition
the vertices. The structure given by a square 2-design and a 1-factorisation of its
incidence graph is called aYouden square. It can be represented in various ways
other than as an edge-coloured bipartite graph; for example:

• As a set with three partitions: the setC is the set of edges of the graph (or
flags in the design); there is a partitionA into k sets of sizev given by the
1-factorisation; and there are two partitionsB1 andB2 into v sets of size
k corresponding to the setsX1 and X2, where parts inBi are labelled by
vertices inXi , the part labelledp consisting of all edges incident withp.
Note that the partitionsA andBi areorthogonal(in the sense that a part of
A and a part ofBi meet in one point). Also, parts labelled byp1 ∈ X1 and
p2 ∈ X2 meet in at most one point, the intersection being non-empty if and
only if p1 andp2 are incident. So the original design (as incidence structure)
and the 1-factorisation of its incidence graph can be recovered from the set
of partitions.
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• As a square array: number the 1-factors from 1 tok and the points ofX1

andX2 from 1 to v. Then take thev× v matrix whose(i, j) entry is equal
to l if the ith point ofX1 and thejth point ofX2 are incident and the edge
joining them belongs to thel th 1-factor, and is blank otherwise. (Replacing
all non-blank entries by 1 and blanks by 0 gives theincidence matrixof the
design.) This is the representation used by Fisher in presenting Youden’s
concept, and is probably the reason why they are called “squares”, whereas
the following representation would suggest “rectangles”.

• As a Latin rectangle: with the above numbering, take thek×v array whose
(i, j) entry isl if the l th point ofX2 is joined to thejth point ofX1 by an edge
of theith 1-factor. This is the representation used by Youden, and is the one
most commonly used in view of its compactness, although it obscures the
symmetry betweenX1 andX2.
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